December 7, 2021

robertlpham

Just another WordPress site

2020 Was a Breakout Year for Crispr

It will be difficult to remember 2020 as anything other than the year Covid-19 drew the world to a socially distanced standstill. But while thousands of life scientists pivoted to trying to understand how the novel coronavirus wreaks havoc on the human body, and others transformed their labs into pop-up testing facilities, the field of Crispr gene editing nevertheless persisted. In fact, it triumphed. Here are five of the (mostly coronavirus-free) breakthroughs in the Crisprsphere that you might have missed in 2020.

1. Crispr takes on blood diseases

Last summer, doctors in Tennessee injected Victoria Gray—a 34-year-old sickle cell disease patient—with billions of her own stem cells that scientists in Massachusetts had reprogrammed with Crispr to produce healthy blood cells. The hours-long infusion made her the first American with a heritable disease to be treated with the experimental gene-editing technology. And it appears to be working.

have a peek here
Check This Out
this contact form
navigate here
his comment is here
weblink
check over here
this content
have a peek at these guys
check my blog
news
More about the author
click site
navigate to this website
my review here
get redirected here
useful reference
this page
Get More Info
see here
this website
great post to read
my company
imp source
click to read more
find more info
see it here
Homepage
a fantastic read
find this
Bonuses
read this article
click here now
browse this site
check here
original site
my response
pop over to these guys
my site
dig this
i thought about this
check this link right here now
his explanation
why not try these out
more info here
official site
look at this site
check it out
visit
click for more info
check these guys out
view publisher site
Get More Information
you can try this out
see this
learn this here now
directory
why not find out more
navigate to these guys
see this here
check my site
anchor
other
additional hints
look at this web-site
their explanation
internet
find more
Read More Here
here
Visit Website
hop over to this website
click
her latest blog
This Site
read review
try here
Clicking Here
page
read this post here

This July, Gray celebrated a year of being symptom-free. In December, a team that includes researchers from the two companies that developed the treatment—CRISPR Therapeutics and Vertex Pharmaceuticals—published promising results from a clinical trial, which is also treating patients in Germany who suffer from a related disease called ß-thalassaemia. In both groups of patients, the treatment seems to be safe, and it so far has eliminated the need for regular blood transfusions. It’s still too soon to say how long the effects will last, so don’t call it a cure just yet. But the consequences could be huge. Sickle cell disease and ß-thalassaemia are among the most common genetic disorders caused by mutations to a single gene, affecting millions of people worldwide.

2. The stable of gene-edited animals grows

For thousands of years, humans have been modifying the DNA of our closest furry and feathered friends by breeding animals to produce the most desirable traits. With Crispr, one no longer has to wait generations to make significant genetic changes. This year, researchers welcomed a raft of world-first barnyard creatures. Among them are pandemic-proof pigs, whose cells have been edited to remove the molecular lock-and-key mechanism that a variety of respiratory viruses use to infect them, and chickens Crispr’d to make them impervious to a common bird disease caused by the avian leukosis virus.

In April, scientists at UC Davis birthed Cosmo, a black bull calf whose genome had been altered so that 75 percent of his future offspring—rather than the natural 50 percent—will be male. He’s the first Crispr knock-in bovine, and proof that one day making all-male beef herds might be possible. (Female beef cattle convert feed to protein less efficiently, so in theory, the approach could mean fewer animals on the land, making it a win both for ranchers and the environment.)

For years, the future of gene editing in agricultural animals has been uncertain, since the US Food and Drug Administration decided in 2017 to regulate changes made by Crispr and other molecular tools as animal drugs. But on December 21, the US Department of Agriculture, which (much more leniently) regulates similar changes made to crops, announced a proposal to take charge of overseeing gene editing in animals bred for food as well. The move, if it goes through, could make it much easier for breeders to bring Crispr’d cows, chickens, pigs, and sheep to market in the US.

3. Disease detectors hit the market

For the past few years, startups spun out of Crispr patent rivals UC Berkeley and the Broad Institute have been sprinting to develop commercial diagnostics without the need for expensive lab instruments. The idea is to use Crispr’s programmable gene-seeking capabilities to pick up bits of foreign genetic material—from a virus, bacteria, or fungus—circulating in a sick person’s bodily fluids, and deliver those results via something that looks like a pregnancy test. Tests made with disposable paper strips are cheap and can go into the field or into people’s homes, greatly expanding their reach.

The pandemic sped up the need for such tests. This summer, the FDA authorized two Crispr-based tests, both for detecting SARS-CoV-2. Boston-based Sherlock Biosciences received the green light for its test in May, and the Bay Area’s Mammoth Biosciences followed in August. It marked the first time the FDA has allowed a Crispr-based diagnostic tool to be used on patients. The tests still need to be analyzed in a lab, but they are faster than the standard method for detecting SARS-CoV-2, called PCR, which typically takes four to eight hours to run. The new tests return results in about one hour. Both companies are currently working toward versions of the test that can be conducted at home.